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Introduction

Thefollowing setof lecturesisaintroductionto the field of non-commutative
geometry.It is supposedto be elementary,in the sensethat the lecturesshould
beeasyto read,but it shouldleadusneverthelessto someadvancedtopics.This
implies thatwe shallhaveto skip many importantdetails in orderto proceed.
It also meansthat it is not possibleto put everythingin such a small volume.
Theorganizersof this Schoolhopedthata lecturercould try to makeapaeda-
gogicaloverviewof the field, and could, at the sametime, try to presentsome
of the recentideasof A. Connes.This is not an easytaskandmaybe doomed
to failure, but it is neverthelessthe purposeof this short set of notes.There-
fore I apologizefor not beingable to discusshereall of the many interesting
topicsbelongingto the realmof non-commutativegeometry(for instancequan-
tum groups),first by lack of spaceandalso becauseother lecturerswill do it.
Notice that an introductorybook to non-commutativegeometryalreadyexists
[11. This book is available in Frenchbut an English version of it shouldap-
pearsoon [2]. The following is by no meansa “summary” of this book, but
a setof some—hopefully—paedagogicaldigressionsaboutselectedideasto be
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found there.Besides,thereare also a few topicsnot discussedin ref. [1] but in
earlierpaperssuch as ref. [3], topicsthat will also be discussedbriefly. It was
recentlyobservedthat non-commutativegeometryoffers a very nice conceptual
framework for the mathematicalimplementationof what is usuallyknown as
the “StandardModel” of particle physics. Obtaining the classicalLagrangian
of electroweakinteractionsfrom a very generalmathematicalconstructionis
certainly very nice, since it gives us a new way of thinking about spaceand
matter; but it is not clear that this is going to be the most importantcontri-
bution of non-commutativegeometryto physics. In any case,a very detailed
accountof the constructionintroducedin refs. [4,2,3] is alreadyavailable [5].
For thesereasonsone should not expect to find a detaileddiscussionof these
topicshere,andonly a singlesection—thelast—will be devotedto them. The
following is thereforeonly whatthe title suggests,namelya brief—andpartial—
introductorysurveyof non-commutativegeometry,which is doomedto become
obsoletesoon. It should be perceivedas an invitation to further readingand
study. Severaltheoreticalphysicistsand mathematicianssharethe belief that
non-commutativegeometryis goingto changeour philosophicalpoint of view
on quantumphysics, and physics in general,and that it should also provide
the mathematicalframeworkin which long-standingproblemssuchas the con-
struction of four-dimensionalnon-perturbativequantumfield theoriesor even
quantizationof gravity, shouldtakeplace.This certainlyjustifiesthe interestof
physicistsin learningthe presentsubject,but this is only a hopeat the moment.

WHAT IS NON-COMMUTATIVE GEOMETRY?

In orderto answerthis question,weshouldfirst rememberthefollowing result
(Gelfand): The definition of a given topological spaceX (a set of “points” x)
is equivalentto thedefinitionof a commutativealgebraA. The relationbetween
thesetwo pointsof view is the following: A = C(X) is the algebraof complex
valued functions on X. Conversely,X is the spectrumof the algebraA, i.e.,
pointsx canbe consideredas irreduciblerepresentations,thanksto the magic
(andobvious) relationx[f] = f(x) whenf ~ A. Our classicalpointof view
on the Universe—evenafter the Einsteinianrevolution—refersto “spaces”,i.e.
spacesof “physical points” or spacesof “events”. The previoustheoremsays
that claiming that the Universe is describedby a commutativealgebrais con-
ceptuallythe samething asclaiming that the Universe (spaceor space—time)is
describedby a topological space(a set of points). In the caseof a space(a set)
X, it is traditional to study, in turn, measuretheory, topology,differential geom-

etry, Riemanniangeometryandpossiblymoreparticularstructureslike a group
structureor a homogeneous-spacestructure,etc. Becauseof the fundamental
dualitybetweenX andA = C(X), it is clearthat everythingthat canbe written
in termsof X canbe written in termsof A. This will be the first task.Thenone
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shouldexpressall fundamentalmathematicalconceptsin a way that doesnot
requirecommutativityof the algebraA. Whenthis is possible,wejust haveto

erasethe qualifier “commutative” andpromotethe correspondingconceptsto
therealmof non-commutativealgebras.Oneanswerto thequestionaskedprevi-
ouslyis thereforethe following: the usualgeometryis the studyof commutative
algebrasandnon-commutativegeometryis the studyof non-commutativealge-
bras. But this answeris not very satisfactorybecausewhat is importanthereis
the intuitive pointof view, thefact thatusualgeometrywastakenas a guideline
andthat wewant to think aboutthe different featuresof this new mathematics
as thosepropertiesof non-commutativealgebrasthat generalizethe well-known
propertiesof usualspaces.Maybea title suchas “non-commutativemathemat-

ics” should be more appropriate,but it would cloud the fact that, in this new
game,wealwayswant to follow usual geometryas a guide.

WHO DOESNON-COMMUTATIVE GEOMETRY?

First, of course,wehavethe mathematiciansthemselves.Onecandistinguish
two main lines of research(this is often donesimultaneously).First people
haveto developnew tools andconcepts.Next, onecanapply thesenewtools to
studyexamples,for instance“bad” spaces(badquotients,infinite dimensional
situations)or specificnon-commutativealgebras.

Thenwe havethe physicists.Historically, non-commutativegeometryis not
new sinceit is asold as quantummechanicsitselfi Actually the tools createdby
physicists—orat least usedfor quite a while—have invadedthe field of oper-
atoralgebras.Let usjust mention a few concepts:Purestatesandmixtures in
statisticalmechanics(stateson staralgebras),equilibrium states(KMS states,
Tomita—Takesakitheory and von Neumannfactors),quantificationof classi-
calsystems(deformationtheory), renormalizationof logarithmically divergent

operators(Dixmier trace),Higgsmechanismandsymmetrybreaking(Rieman-
nian geometryof discretespaces) Nowadays,physicistsuse the methods
of non-commutativegeometryin physicalsystems(gaplabelling [6], quantum
Hall effect [6], quantumfield theory [7], etc.).

It shouldbe clearthat every physicistworking in quantumphysicsworks in
non-commutativegeometry(but often like Monsieur Jourdain). Many math-
ematicaltools developed (or “mathematicalfacts” discovered)by theoretical
physicists do exist and wait to be incorporated in a generaland appropriate
mathematicalframework. Conversely,many tools recentlyinventedby mathe-
maticianswait to be usedin quantumphysics.It may be sadto rememberthat,
exceptin dimensiontwo, thewhole apparatusof quantumfield theoryis mostof
the time a formal seriesconstructionwhosefundamentalmathematicalsignifi-
canceis ratherunclear—maybenon-commutativegeometrywill cast a brilliant
light on this subject.Again, this is hope.



310 R. Coquereaux/ Non-commutativegeometry:a physicist’sbrief survey

1. Non-commutative measureand topology

We already mentioned the fundamentalGelfand correspondencebetween
topological spaces(compacttopological spaces)andcommutativeC* algebras
(C* unital algebras).By removingthe word “commutative”, we seethat non-
commutativetopology is nothing else than the studyof non-commutativeC~
algebras.

In the classicalcase,i.e. in thecaseof “commutativegeometry”,andinasmuch
asmeasuretheory is concerned,we areusuallyhappywith Borel measures,i.e.,
ratherthan developingabstractsigmaalgebrasandtheir like from scratchone
first definesa topologicalstructureon a spaceX andtakesasmeasurablesetsonly
thosesetsthat areobtainedfrom thetopologyof X. In otherwords,oneconsiders
thesigmaalgebrageneratedby thefamily of opensets.Then, ratherthanstarting
from the spaceX, we can start from the algebraof continuousfunctions (that

encodesthe topology) anddefine (positive) measuresas (positive) continuous
linear forms on the commutativealgebraC(X) of continuousfunctions, i.e.
linear functionalsp such that p(ff) > 0 Vf e C(X). The correspondence
with the usualdefinitionof measuresis obtainedvia the Riesztheorem,namely

by writing p[f] = fxfdu. From C’(X), we build the measuresp. From a
given p. we can build the Hilbert space7-I = L2(X,,u) of square integrable

functions.From7-I, onebuildsthecommutativevon NeumannalgebraL~-(X. ji)

of essentiallybounded,measurablefunctions,and this spacecan be seenas a
subspaceof r(H), the algebraof all boundedoperatorsin 7-I. This is done as
follows: the elementsof C(X) act on 7-I by multiplication, thereforewe obtain
a representationit in 7-I of this commutativealgebra.The algebraL~(X, p)
is definedas the commutant of it, i.e. as the set {T E £(If) s.t. Tir(f) =

iz(f)T ,Vf C C(X)}. Notice that this algebrais equalto its own commutant
in L~(H),so that C(X) c .A4 = L?c(X,p). The definition ofthe measurep is
thenextendedtoL.~(A’, p). All this is standardmeasuretheory,but the point is
that it is possible—aswe saw—topresentit in a way that startsfrom the algebra
andnot from the space.

By mimicking the previousconstructionandremovingthe qualifier“commu-
tative” we discover“non-commutativemeasuretheory”, which thereforecoin-
cideswith the studyof von Neumannalgebras.Onesketchesthis construction
as follows. We first start from a C* algebraA, in general non-commutative—
henceit is not the algebra of complexfunctions on a topological space!—and

define stateson A—the analogueof measures—asnormalizedpositive linear
forms on A. i.e., p C A*, p(f*f) >0 Vf eA, p(l) = I. We then constructa
Hubert space7-I by first defining a scalarproduct (f, g~= p (f* g) making A a
pre-Hilbert spaceandcalling 7-I the correspondingcompleted,separatedvector
space.This is the so-calledGNS (Gelfand—Naimark—Segal)construction.As in
the commutativecase,A actson 7-I by multiplication, which definesa represen-
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tation of A in the space£ (H) of all boundedoperators.Onefinally buildsthe
von NeumannalgebraM as the bi-commutantof it (A). Hereit is necessaryto
take the bi-commutantbecausein the non-commutativecase,the commutant
and bi-commutantof it (A) differ. This M is thereforethe non-commutative
analogueof £~°(X,p).The final step is to extend the definition of p to the
whole of M—of courseA c M, andrememberthat, by definition, a von Neu-
mannalgebrais a unital subalgebraof £(H) which is equalto its bi-commutant
andis endowedwith a staroperation.Rememberalso that, if A is an algebraof
operators,A, A’ andA” areusuallydifferent but A” = A’.

Oneshouldnow discussmanyother interestingtopics,but we shall only men-
tion a few. Forexample,the non-commutativeanalogueof infinite positivemea-
suresis thetheoryof weightson von Neumannalgebras.Thistheoryincorporates
severalnice mathematicalconstructionssuch as the theoryof KMS states,the
theoryof Tomita—Takesaki,the classificationof factors,etc.,and is at the root
of statisticalmechanicsof infinite dimensionalsystems.Anotherexampleis the
non-commutativeanalogueof the theoryof embeddings,immersionsor isotopy
of manifolds: ratherthan “inserting” spaces(or commutativealgebras)within
one another,one studiesthe relative “positions” of severalnon-commutative
algebras.Herewefind thereforenotions like entropy,completelypositivemaps,
subfactorsetc. Physics-wise,this kind of topic is very much relatedto informa-
tion loss whenwe chooseone or otheralgebrato describethe same“reality”;
thereforeit is also relatedto the correspondencebetweenquantumandclassical
description [8]. At the fringebetweenmathematicsand physics,let usmention
also the new developmentsin knot theory [9], motivated by questionsabout
relativepositionsof subfactors.

2. Non-commutativeuniversaldifferential forms

2.1. FIRST DEFINITION OF QA

Given an arbitrary algebra A, one can constructa universalobject QA as
follows. Toeveryelementa C A we associatea newsymbol 5a. As avectorspace,
QA is thelinear spanof wordsbuilt out of the symbolsa andóa. Multiplication
of two suchwords is doneby concatenationandoneimposestheusualalgebraic
rulesof associativityanddistributivity over +. The only non-trivial relation is

the Leibniz rule
5(ab) = ~(a) b + a 5(b).

Thanksto this rule it is clear that any elementcan be written as a sum of
monomialsof thekind a0ôa1óa2 -

5a~or 5a
15a2 ‘‘ ôa~. For instance,

aoó(a1)ô(a2)a3 =a0~(a1)ó(a2a3)—a~(a1)a2~(a3)

=a0ô(a1)ô(a2a3)—a0ô(a1a2)5(a3) +aoa1ó(a2)5(a3).
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It is convenientto add a unit 1 to A, even if it alreadyhad a unit—which
we call e—andset ô 1 = 0; then the two kinds of basic“words” definedabove
collapsebecausewe can write ~a1 - . öa~= lôa1~a2- - ~ In the extended
algebrae is no longera unit but a projector.The symbol 5 is now definedas an

operatorby the rules ô (aoôai - . . ôa~)= 5a0öa1 - - . ôa,~and ô
2 = 0. The QA

is graded,since we can write QA = ~II~t~JQ~A,where QP is the linear span
of monomialsa

0ôa1 . . . öa,~,.It is thereforea gradeddifferential algebra.It is a

universalobject in the sensethat it factorizesderivations(see,for instance,ref.
[3]). We shouldmentionthat thereexistsa Z2-gradedversion of Q,’l [10] but
we shallnot use it. Let us mentionalso (we shall use this fact) that in many
interestingcasesQA canbe represented—insomecasesas an algebra,in other
casesas a differential algebra—withinthe space£(H) of boundedoperatorson
someHilbert space7-I.

2.2. CLASSICAL EXAMPLE A = C(X)

In that case,f C A is a function of onevariable andwe may consider~f as

a function of two variables,setting~f(x,y) = f(y) — f(x). The Leibniz rule
is satisfied,since

f(y)g(y) -f(x)g(x) = [f(y) - f(x)]g(y) + f(x)[g(y) g(x)];

thereforeó(fg) = 5(f)g + f5(g). In thesameway, amonomiallike a0óa1 ôa2
canbe interpretedasa0(x) [a1(t)— a1 (x)] [a2(z) — a2 (v)], i.e. asa functionof
X x X x X vanishingon contiguousdiagonals.There is a usefulmap,sometimes
calledthe “classicalmap”. It goesfrom the universaldifferential algebraQA to
the usual differential algebraA(X) of differential forms on X, and is defined
on monomials (for instanceof degreetwo) by Cl(ao5ai~5a2)= a0da1 A da2.
Notice that Cl (~f(x, i’)) = (/)f (x, s’ )/Dy’

1 )~ dxv.

2.3. SECOND DEFINITION OF QA

The previousexample,and in particular the equation 5f(x,v) = f(y) —

f(x), suggeststhe following alternativeconstructionof QA for an arbitrary
algebraA with unit. For h C A we set ób = 1 ® h h ~ I C A 0 A. Then one
getsa~b= a® b — ab ® 1 C Ker(m) c A® A. HereKer(m) denotesthe kernel
ofthe multiplication mapm(x,y) = xy C A. OnethendefinesQ1 = Ker(m).
As anexampleof multiplication we chooseto consider,for instance,

aóbôc = (a®b—ab® l)(l ®c—c®1)

=a®b®c—ab® 1 ®c—a®bc® 1 + ah®c® 1.

OnethereforedefinesQP = ~‘ ®A Q1 ®A -. ®A Q1.
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2.4. USEFULNESS OF QA

First we have the universality property—this was already mentioned. But
moreoverit is possibleto considermultilinear forms on A as linear forms on
QA, which is often very handy. Indeed,the knowledgeof the (n + 1 )-plet of
elements{ao,a1 a~}of A, wherenoneof the a, is equal to the “extra unit”
1 (rememberthat we addeda unit in section2.1), is totally equivalentto the
knowledgeof the elementa0óa1 - . . 5a,, of QA. Indeed,the symbolóa is merely
anothercopy of the symbol a. However,this is true only beforewe addthe unit
1 sinceó 1 = 0 and,consequently,óa may be equalto 5b without a being equal
to b. Therefore,if ç~denotesa multi-linear form on A—whereA denotesthe
algebraof interestbefore the addition of an extra unit 1—it can be identified
with a linearform also called~ on the universaldifferential algebrathroughthe
relation

= a05a1.•5a~),

but this form is such that q~(lôa1. . . cia,,) = 0. Therefore many concepts—
in particular cohomologicalconcepts—relatedto multilinear forms on A (an
algebrawith orwithoutunit e) canbeexpressedin termsof thoselinearformson
QA (wherewehaveaddedanextraunit 1) thatsatisfytheaboveconstraint.Such
linear forms arecalled“closed” in ref. [3] but we shallavoid this terminology
becauseof the toolargenumberof possible(co)-homologicalconceptsrelatedto

thesubject.Weconcludethis subsectionby mentioningthat (n + 1)-linearforms
on A or, equivalently,linearforms on QA thatvanishon elementsl~a1-

areusuallycalledHochschildco-chains(moreaboutit later).

2.5. THE CUNTZ AND ZEKRI ALGEBRAS

Although wehaveno room for discussingthesetwo importantconstructions
here,we want to remind the readerthat, if u is an endomorphismof A, i.e.,

if u(ab) = u(a)u(b), thenwriting u = 1 + q definesan operatorsatisfying
the relationq(ab) = (qa)b + a(qb) + (qa)(qb), which looks like adeformed
differential andcan also be written q(ab) = q(a)b + u(a)q(b). This means
thatq is a derivationtwistedby anendomorphism.Onecan [11] thenconstruct
an algebraQA out of symbolsa0q (a1 )q(a2) - - . q(a~) exactlyas we did for QA.
Thereis also a Z2-gradedversion of this construction[12] (thealgebraZA ).
Bothalgebrasplay a major role in non-commutativegeometry.

3. Non-commutativeDe Rham currents: Hochschildcohomology

We alreadysawthat in the classicalcase,i.e. A = C(X), the algebraQA was
much larger than the algebraA (X) of differential forms. It canbe shownthat
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Hochschildhomologycoincides,in this case,with differential forms.However,
becausewe chooseto work with cohomologyratherthanwith homology,we
expectthat Hochschildcohomologywill coincidewith the dual of differential
forms (distributions),i.e. with whatis called thecomplexof De Rhamcurrents.
This is indeedso.Thepurposeof thissectionis thereforeto sketchaconstruction
that coincideswith the definition of (distributionson) differential forms, but
that canbe generalizedto the caseof a non-commutativealgebraA. In the last
section,we shall alsodescribeanotherconstruction,leadingdirectly to a non-
commutativeanalogueof A (X).

3.1. GENERAL CONSTRUCTION

We know thatö on QA is almosttrivial from the homologicalpoint of view
(only “almost” becauseôl = 0).

One defines the Hochschildco-boundaryoperatorb as follows. Acting on
~(ao,ai a~)itgives

=

~(—l)~~(ao,...,ajaj+i,...,an+i)+ (_l)n+i~(an+iao,...,an).

For example,

[bq~](ao,a1,a2,a3)=

ç~(ao,a1,a2a3) — çb(ao,aia2,a3) + q~(aoa1,a2,a3) —

At thispoint it maybe enlighteningto comparethisexpressionwith the calcula-
tion of a0c5(a1 )c

5 (a
2 )a3 donein section2.1. Indeed,onecanseethat, provided

we identify multilinear formson A andlinear formson QA (with the constraint
discussedpreviously),calculatingbq~amounts,in this example,to calculating
~( [a0ôa1ôa~,a3]). Thiscan be generalized,but weshallnot use thisformalism
andrefer to ref. [3] or ref. [10].

The nextstepis to showthat b
2 = 0, andthis is straightforwardandcumber-

some
Since we havea cohomologicaloperator,we define, as is usual, the space

of Hochschild cocyclesZ” = {~E C”/bç~= 0}, the spaceof Hochschild
coboundariesB~= {ç~E C~/q~= bw for y E C”~} and the cohomology
groupH~= Z~/B~.In the above,C” denotesthe spaceof (n + 1 )-multilinear
forms on A; noticethe shift by oneunit.

Terminologicalremark:the curiousreaderlooking for adefinition of Hoch-
schild cohomologyin abookof homological algebracould be puzzledbecause
thiscohomologyisusuallydefinedasacohomologywith valuewith abi-module.
Here the bi-moduleis the dualof A itself, andwe did not mention this before
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becauseit was not necessary.This choice, along with the fact that we have
an obviouspairing betweenA* and A is, however,at the origin of the above
construction.

3.2. THE CLASSICAL CASE

We know that De Rhamcurrentsaredistributional forms, i.e., if C is a p-
current andco is p-form, then (C, w) is a number.We shall indicatethe corre-
spondencebetween(arbitrary) currentsandHochschildcocyclesin the partic-
ular caseof two-forms, leavingto the readerthe taskof generalizingit (seeref.
[3]).

Fromcurrentsto Hochschildcocycles:C beinggiven, we construct~(f, g, h)
= (C,fdg A dh). Onecanthencheck thatbq~= 0.

FromHochschildcocyclesto currents:~ beinggiven, we construct(C, f dg A
dh) = q~(f,g,h)—~(f,h,g).

The abovetwo formulaeare differentbecausethereis no reasonfor ~ to be
antisymmetric.

It remainsto be seen,~ beinga Hochschildcoboundary,if the corresponding
currentjustvanishes,which is an easyconsequenceof the definition of b andof
anti-commutativityof the wedgeproduct.

Theconclusionis thattheHochschildcohomologygroupofdegreep coincides
with the spaceof Dc Rhamcurrentsof degreep. In particular,one can check
that the spaceH~is trivial assoonaspis largerthandim(X).

In section10 we shall see a new construction,which, when appliedto A =

C(X), givesdirectly the algebraA(X) of differential forms.

4. Non-commutative De Rham cohomology:cyclic cohomology

Onemotivation for looking for a more refinedcohomologyin the non-com-
mutativecaseis the following: We know, thanksto the previousconstruction,
how to define a non-commutativeanalogueof differential forms, but we have
no candidate—yet—foran analogueof the De Rham cohomology—i.e.Betti
numbersetc. Sincewe areworking at the dual level, we arelooking for anon-
commutativeanalogueof the operatora thatacts usuallyon currentsas follows:
(DC,w) = (C,dco),whereco ~ A(X).

Theeasiestdefinition (this is obviouslyamatterof taste)is thefollowing. We
startfrom the following notion:

~ is cyclic -~r~’q~(a0,a1,. . . , a,,) (—1 )“~(a~,a0, a1,... , a,,~).

We thenmakethe following fundamentalremark [3]: If ç
5 is cyclic, thenb~is

alsocyclic.
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It is thennaturalto considerthe cyclic subcomplexof the Hochschildcom-
plex, i.e., to consideronly cyclic Hochschildco-chainsalongwith the sameb
operatoras before.Onethendefinesthe spacesZ~’,B~of cyclic cocycles,cyclic
coboundariesandtheirquotients,the cyclic cohomologygroupsHA”.

In the “classicalcase”, i.e. with A = C~(X), one [3] proves

= Ker3®H~2EDHk4~,

whereKerO is thekernelof the 3 operatorin thespaceof k-dimensionalcurrents

andwhereH~denotesthe homologygroupof degreep for currents.This means
thatwedo not getaterm-by-termequalitybetweenthecyclic cohomologygroups
and the Dc Rham homologygroups for currents,but that, nevertheless,the
informationcontentis the same,since,providedwe choosek big enough,the
even or odd cyclic cohomology groups are equal to the direct sum of all the (even

or odd) Dc Rhamhomologygroups.
Thisresultsuggests,at leastin the caseof C(X), that thereshouldbe a canon-

ical way of sendingHf in Hf~
2.This is indeedtrue. Actually, a much stronger

propertyholds: for anyalgebraone can definean operatorS, often called the
Connesperiodicityoperator,thatmapsCf to Cf~2—with C,~referring to cyclic
cochains.It is thereforenaturalto define,in general,theso-called“even andodd
periodiccyclic cohomologygroups”as the inductive limit of H,~and~

5. A bestiary of other nice concepts

Wehave not enough time here to present all the inter-relations between the

above constructions and to mention the many other nice concepts and operators
introduced in ref. [3]. Weshall only give the definition of those operators that
play (or are bound to play) an important role in non-commutativegeometry.
Besides the periodicity operator S: (~f—p ~f~2that was already mentioned, we
may consider the following operators: the cyclic antisymmetrization operator

[Aq~](ao,a
1,...,a,,)

=/(ao,a1,...,a,,)+ (—l)”~(a~,a0
ii \ I 1’~fl&I

+ (p~a,,_i,a,,,ao,...) + ~—~1) ~ + .

andthe non-antisymmetrizedboundaryoperatorB0 defined as

[B0q5](a0, a1 a~)= ~(e, a0,. . . , a,,) — /(ao a~,e)

wheree is the unit of the algebra,which in thiscaseis requiredto be unital.
The cyclic boundaryoperatoris, by definition, B = AB0.Then B mapsC” to

C~~’andonecanshowthat B
2 = 0 andthathR + Bb = 0. Using the last two

propertiesalongwith b2 = 0 onecan alsodefineabi-complex (noticethat b and
B act in oppositedirections—fromp to p + 1 or the converse—sothat hB + Bb
sendsp chainstop chains).Fromthis bi-complexonecan define“entire cyclic
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cohomology” [13] as follows. Entire cocyclesaresequences(~2n) or (c~2n+i)

madeof evenor odd functionals~ andsatisfyingthe following constraint (we
write it below for the odd case):

b~2,,_~ + R~52,,+i= 0.

Usingsucha cocycle,alsoassumedto obeysomekind of growth conditions,one

can define an entire functionon the algebraA

F~(x)=

Thereareexplicit formulaefor suchcocycles,cf. ref’s. [7,13]. Notice that such
an F~,can bethoughtof as akind of “effectiveaction”. Entirecyclic cohomology
seemsto provide the appropriateformalism neededto handleinfinite dimen-
sional casesin “commutativegeometry”.

6. Non-commutative vector bundles and connections

Again we useclassicalgeometryas a guide.A principal bundleis nothingelse
than a “machine” helping usto constructassociated—inparticular vectorial—
bundles.Thesevectorbundles,in turn, areusedto constructsectionsof vector
bundles—i.e.physical matterfields. Theimportantalgebraicremarkis then the
following: The spaceS of sectionsof a vectorbundleE abovea manifold X is
a moduleoverthe algebraA = C°’

3(X). Finally we know that anythingthat is
twistedcanbeuntwistedbyputting it into a spaceof higherdimension.In bundle
language,this meansthatanyvectorbundle—trivial or not—canbe trivialized
by increasingits dimension(addingcopiesof C”).

In non-commutativegeometry,a “vector bundle”will bereplacedby a left or
right moduleovera not necessarilycommutativealgebraA. The “left” or “right”
adjectivecomesfrom thefact that,in ageneralsituation,amoduleoverA will be
left or right but not necessarilya bi-module.In otherwords,if v C S andf E A,
f-v andm’ -f will not bothmakesenseas elementsof S. Actually, andbecauseof
our westernhabitsof writing from left to right, it turns out thatit is usuallymuch
moreconvenientto considerright modulesthan left modules.A trivial bundle
will nowbe a free module,i.e.amoduleisomorphicwith A” for somen. A non-
trivial “non-commutativevectorbundle”will be characterizedby the factthat it
is a quotientof a free module, i.e., S is isomorphicwith pA” for some projector
p, p2 = p. This is the non-commutativeanalogueof the “untwisting property”
that wasrecalledabove.To summarize:Non-commutativevector bundlesare
(right) finite projective modulesoveran algebraA. The classificationof vector
bundlesaboveaspaceX leadingto theso-calledK-theoryof X is nowreplacedby
aclassificationof projectors(moduloappropriateequivalence)andthis defines
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the K-theory of the algebraA. This is less elementarystuff and we stop the

discussionhere.
To define connectionsand covariant exterior derivatives, we chooseagain

the classicalsituationas a guide.The covariantexteriordifferential V is a map
S —‘ S ®,~ A1 sendingvectorfields (or tensorfields) to one-form-valuedvector
(tensor)fields. It satisfies

V(Xf)=(VX)f+X®df, XCS,[CA.

Onethen extendsthis definition to 5” = S ®~A” as follows:

V : 5P+J

V(X ®2) = (VX)A + (—l)”X ~ d2, X C S”,A C A.

One then checks that the curvature V2 is a linear object:

V2(X2) = (V2X)~, i.E A.

In non-commutativegeometry,we do thereforeexactly the same!The only

points to which one shouldpay attention are the following. First we use right
multiplication by functions (as in the aboveformulae) sinceS is only a right

A-module. Next, one hasto choosea gradeddifferential algebraA that should
be a A-bimodule. In the classicalcase,A is the algebraof differential forms
A(X). with .4 = C~’-(X) =

11°(X).In the non-commutativecase,thereare
manypossibilitiesandeachonedefinesadifferentialcalculus.The mostobvious

choice is to choose A = QA, as definedin section 2 (notice that evenin the
classical case, this possibility leads to a generalizationof the usual differential
calculus,sincethealgebraof differential forms is only aquotientof the universal
algebraQA). When the algebraA hasenoughderivations,it may be useful to
build a differential calculusrelying on the choiceA = C(Der A. .1) of A-valued
multilinear forms on the spaceof derivations,or evenon the choiceof QDvA.
its smallestgraded differential subalgebracontaining .1. This possibility was
investigatedin refs. [14,1 5 ~. Still anotherchoice will be briefly describedin
the last section.Notice, finally, that in the casewhere A is equippedwith an

extrastructure—forexample. if .1 is a Hopf algebra—theremay be particular
differential calculi enjoying particularly nice properties[161.

As a basicexamplewe may takeS = A itself and A = (Q.l.ô). We suppose
that A is unital (maybeafter addinga unit). Let I e A andcall w VI E Q

1.
Letf C A:thenVf = V(lf) = (V1)f+ l®of = c~I+wf.Thecurvatureis
o Vw = V2l,andthereforeO= V(lw) = (Vl)w+(—l)°l5w = ~w+w2.

Notice that evenin the “classical case”A = C(X), we may considercon-
nectionssuchas w = f~f ~5(f2) which arenon-zeroin Q’ andtherefore
are connectionsin the previoussense,but haveno classicalcounterpartsince
Cl(w) C A’ is obtainedby Cl(w) = fdf — ~df2 = 0. Rememberthat an
arbitrary elementof Q’ canbe definedas a function of two variablesvanishing
on the diagonal,henceit is a bi-local quantity.
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7. Non-commutative elliptic operators

Motivations.Peoplewant to be ableto “compute” cyclic cocycles and also to
beableto consider“abstract”elliptic operators,generalizeindex theoryto the
non-commutativecase,etc.

Almost trivial remarks. Considera Z2-gradedHilbert space7-I = H~® H~—
think for instanceof the left and right spinor fields on a 2n-dimensionalspin
manifold—with gradingF equalto (~~ )—think of the chirality operatory~—
with an algebraA actingon 7-I—think of the multiplication of spinor fields by
scalarfunctions definedon the manifold. Then, every operatorB in 7-I canbe

decomposedinto an evenandodd part, B = B~+ B with B~ ~(B + Br),
Br TBT. Let us now consideran operatorF : 7-I —~ 7-I which obeysthe
propertiesF

2 = I and FT = —TF. Then, let usdefine

dBi[F,BIg with[F,B]g=FB—B”F.

It is easyto check that the d operator,definedthanksto this gradedcommutator,
is a derivation and satisfiesthe propertyd2 = 0 (coming from F2 = 1). As
a classicalexample,we may choosethe Dirac operatorD on a Riemannian
manifold, write a polar decompositionD = D~Fwhere D~is positive and
F2 = 1.

Non-commutativegeneralization.The only thing to be donein order to go to
the non-commutativeframeworkis to forgetaboutcommutativity,spinor fields,
chirality and A = C(X) but to promotethe previouspropertiesto the status
of a definition—technically,one has also to assumethat [F,a] is a compact
operatorfor any a in A. Such a triple (7-I,T,A) then defineswhat is calledan
“even Fredholm module” [31.There is an analogoustheory for the odd case
which, in the classicalcase,correspondsto the choice of a manifold with odd

dimension—whenthere is no chirality operatorand thereare no half-spinors.
Let usproceedwith the studyof the evencase.The interestof this construction

is the following. Onecan prove [31that

a,,)=Str(a
0[F,a1][F,a2][F,a,,]),

where
Str(B) ~.tr(TF[F,B])

is a cyclic cocycleon A. This makessenseprovidedthetraceexists,which implies

that n shouldbe large enough,say n > p — 1. In that case,the evenFredholm
moduleis called“p-summable”.The previousconstructionthereforeyieldscyclic

cocycles,i.e.,what wemaycall topological invariantsof thealgebraA. Fromthat
point one candevelopa non-commutativeanalogueof index theory, of the K-
theoryandof its dual,calledK-homology.Going into thesematterswould drive
us too far, but just note that, exactly as in the classicalcasewhere one gets
“topological numbers”from the pairing betweenvector bundlesandoperators,
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one gets also topological numbers in the non-commutative case, like for instance
e), from the pairing betweenan abstractoperatorF, used to define

i, and a “non-commutativevector bundle” characterizedby the choice of a
projectorein A or in M,,(C) ® .1.

8. Non-commutativeRiemanniangeometry:K-cycles

Theclassicalpath. The usualapproachin textbooksof differential geometryis

to follow the path: topological space,smoothmanifold, metric (anddistance),
Dirac operator,spinor fields. Not surprisingly, if we try to expresseverything

by usingfunctionson the manifold X—which we shall assumecompacthere—
rather than in terms of points, we may follow exactly the samesteps but in

the reverseorder. More precisely,the claim [2] is that we can recover every-
thing from the data (A,H, D), whereA is an Abelian von Neumannalgebraof
multiplication by measurableboundedfunctions on X, where 7-I is the Hilbert
spaceof L2 spinorsandwhere D is the Dirac operator.How can we proceed
(without knowing X, of course!)?First we call L the subsetof A contain-
ing all f e A such that the commutator [D,.f I is bounded.It can be shown

that suchfunctions 1 arealmosteverywhereequalto a Lipschitz function—i.e..
f(x) — f(i’)~ < cd(.v,i’), Vx.v E A’. This remark can be usedto define the

distanceitself as

d(x,i’) = Sup{~f(x)-f(y)~,f E A,~[D.f]~~ l}.

Notice that a supremumover a spaceof functionsreplacesthe usual infimum
overa spaceof points.Thefinal stepis to recoverthe C* algebraA of continuous
functionson X asthe norm closureof L in A. Now we haveA andcantherefore
reconstructthe spaceX itself as wasrecalledin the first section.

In the non-commutativecase.the whole constructiongoesthrough, just by
removing the adjective “commutative”. More precisely, one starts from the
samedata (A,H,D), where the von Neumannalgebra A is not supposedto
be Abelian—thesedataare called a “K-cycle” in ref. [21. Then L and the—
non~commutative_C*algebra A are constructedas above. The distanced is
also obtainedfrom the sameformula, but now the “points” x and j’ are states
on the algebra.We havethereforethe non-commutativeanalogueof a Rieman-
nian structure(and we write x [f] ratherthan ~f (x) sincewe havestates.i.e.
generalized“points”).

Thelastmissingconceptis the non-commutativeanalogueof the volumeform
associatedwith a Riemannianmetric. The crucial remark—validin the classical
case—isthatwe may write

f fdv =
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wheref e A, n = dim(X) andwherethe Dixmier traceis defined—formally—

as a limit of the sequence(Log N)—’ ~~‘AJ, A1 running overthe eigenvaluesof
theoperatorfD~’. Thewholepoint is that this “trace”, which is a tracebutgives
zeroon any operatorof trace class,is a conceptthat also makesperfectsense
when f belongsto a non-commutativealgebraA. In physicists’ language,this
“Dixmier trace”picks up the pole part of a logarithmically divergentoperator.
Notice that n doesnot needto be an integer.The aboveformulais thenusedto
definetheleft-handside,i.e. thenon-commutativeanalogueof thevolumeform.
Notice that this formula is ratherintuitive—at leastin a veryformal sense—for
instanceby writing dv = d

4x andD = y” 3/Ox”! To concludewenotice that
the wholegeometry—includingthe volume form—hasbeenrecoveredfrom the
singlepiece of datacalleda “K-cycle”.

9. The non-commutativeYang—Mills action

Let D be a Dirac operator—inthe previoussense—andwrite D = D~Fwith
F2 = 1. From a formal expressiona

05a,~a2 . ‘ - c5a,,, i.e. anelementof QA, we
alreadyknow that we canbuild Str(ao[F, a1] .... [F, a,,]), which is a topologi-
cal invariant. With the previousformalism at our disposal,it is rather natural
to consideralso a quantity suchas TrDjxmjer(ao[D,al][D,a2] . [D,a,,]D”).
Indeed,in a classicaland “flat” case,the operator [D,f], with f E Coc(X),

is nothingelse thana multiplication by y”30f , wherey~areDirac (Clifford)
generatorsandn = dim(X). ChoosingS as A itself andthe differential algebra
QA, we see that 0, the curvatureof the connection,is an elementof Q

2, and
02 is an elementof Q4, thereforea sumof elementsof the kind a

05a, --

Onecannow representA andQA as operatorsin 7-I, thanksto the replacement
ôa —~ [F,a] or óa —f [D,a]. Notice that only the first oneleadsto represen-
tation of QA as a differential algebrasince D

2 ~ 1. In any case,one expects
the first kind of expression—usingF and Str—toleadto a topological invariant
like O~,,0””andthe secondkind—usingD andthe Dixmier trace—toleadto the
action functional0~O”.This is indeedso.

In general,onehas to couplethe connectionV to the Dirac operatorD, i.e.
to considerthe analogueof yP(3~ — — A,,), co,, being the spin connection.
We also needa spinor scalarproductto be ableto write the fermionic action,
i.e., we needthe analogueof the Dirac “bar” operator.Themethod consistsin
choosinga Hermitian (and finite projective) module S overA, along with a
connectionV as a mapfrom S to S ® Q’. This connectionhasto becompatible
with theHermitian structure,in thesensethatd((~v,~)) = (w~V~)+ (V~,~)—
in physics,wepreferto write (~ii,~)= ~ OnethendefinesDv as a mapfrom

~‘ ®A 7-I to itself suchthat Dv(v ® qi) = V ®D~+ (Vv)W, where Vv, in this
last expression,has to be understoodas the linear operatorin 7-I representing
the elementVv of S ® Q’.
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10. Symmetry breaking and Higgs mechanismin non-commutativegeometry

Usingnon-commutativegeometryto recoverthe usual pureYang—Mills the-
ory is certainlysatisfactorybut doesnotbring much from the conceptualpoint
of view. Thesituationis differentin thecaseof symmetrybreaking(Yang—Mills
fields coupledto Higgs fields). The merereplacementof the “classical” algebra
A = C(X) by the algebraA = C(X) + C(X) in thepreviousconstruction,i.e.
the replacementof the spaceX by a “pair” of such spaces,leadsdirectly to a
Yang—Mills action, incorporatingnot only the usual pureYang—Mills term but
also a kinetic term for Higgs fields and a self-couplingvia a quartic potential
exhibiting symmetrybreaking.This was shown in ref. [4]. The definition of
the generalizedYang—Mills actionwasgiven in the lastsection.The calculation,
usingthe abovealgebraA, the moduleS = A itself, and the differential alge-
bra QA, is straightforward.Formally, the obtainedexpressionis a Lagrangian
densitydescribingthe interactionbetweena gaugefield anda Higgsscalarfield,
along with a self-couplingof this scalarfield via a symmetry-breakingpotential
of fourth degree.Conceptually,non-commutativegeometryunifies the concepts
of Yang—Mills fields andHiggs fields in a generalizedconnection.In the same
way, the “non-commutative” Dirac operatorincorporatesthe usualDirac oper-
ator (describingthe coupling of spinorsto the metric andto the connection),
but alsothe Yukawaoperator(describingthe couplingof spinorsto Higgsfields
and in particularthe massmatrix itself). In this sense,the massesandcoupling
of elementaryfermionsareencodedin the Riemannianstructureof the algebra
describingwhat we call space—time.

Recoveringthe StandardModel of electroweakinteractionsin this framework
amounts,in particular, to selectingthe “right” algebraA. The resultof the pre-
vious calculationsuggeststhat we have to take a direct sum of two algebras
A = A, ® A2, in order to get Higgs fields. When A, andA2 are commutative,
i.e.,A, = C(X,) andA2 = C(X2), the connectionco, consideredasanelement
of Q’, is a function of two variablesand can be decomposedin threepieces:
w(x,,y,), w(x2,y2), w(x,,y2) with x,,y, C A, andx2,v2 E A2. The first two
pieces,in the limit where (y1 — x,) goesto zero,becomeusual connectionone-
forms. The last cannot be madeinfinitesimal andbecomesthe Higgs field (a
scalar). Intuitively, one can think of X, and X2 as “parallel universes”where
left—or right—moverslive, or as the two sidesof a pieceof paperseparatedby

a (hereconstant)distancel/p, the Higgsmass.
Physically,we haveto identify the algebrasA, andA2. Ratherthan choosing

anon-trivial projectivemoduleover thealgebraA, it is computationallysimpler
to choosea biggerA but takethe moduleasA itself. This is what is proposedin
the lastversion [2] with the choiceA (H® C) ® C(X) whereH and C are
the fields of quaternionsandcomplex numbers.Emergenceof the gaugegroup
SU(2) x U(l) is then very natural. The above algebraA describesa “space”
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that is almost classical, in the sensethat it is the productof a usual manifold
timesadiscretespace(noticethat the spaceof complexfunctionson the setwith
two elementsis simply C® C). Thegeometryof the first is specifiedby a usual
Dirac operator,the geometryof the secondis specifiedby theYukawa operator
of physicistsandencodesin particularthe massmatrix (which hasno particular
reasonto be diagonal).Incorporationof quarksandcolourdegreesof freedomis
also describedin ref. [2], which meansthat the classicalLagrangiandescribing
the usual standardmodel of particlephysicsis recoveredas aparticularcaseof
a very generalmathematicalconstructionwhich, by far, encompassesthe usual
classicalsetting of gaugetheories, using principal and vector bundles.Let us
noticean important technicaldetail: in ref. [2], the differentialalgebrausedto

developadifferentialcalculus—asdescribedabove—andin particularto recover
the StandardModel of electroweakinteractions, is not the differential algebra
QA, but a differential algebra QDA definedas the quotientof the first by a
differential ideal, namely by J = J0 + dJ0, where .J~= Ker(it) and it is the
mapfromQA toL(H), sendinga0ôa, ‘ôa,, toao[D,a,].-. [D,a,,]. Actually,

QDA is a fundamentalobject since, in the classicalcase, it can be shown to
be isomorphicwith the algebraof differential forms themselves—hereonegets
directly theforms andnot the DeRhamcurrents,unlike in section3. This slight
modification of the constructionpresentedin ref. [4] has severaladvantages,
the main onebeing gettingrid of spurious(unwanted)termsthat appearedin
the calculationof the Higgspotential.

Inspiredby ref. [4], anothernon-commutativeconstructionof theLagrangian

of the StandardModel wasproposedin ref. [1 7]. Thisconstructionusesrather
simplemathematicaltools and is not supposedto be a multi-purposemachine,
ableto handleany kind of algebraicsituation. It was, however,devisedto re-
covertheStandardModel from non-commutativegeometry—inparticularfrom
the notion of generalizedconnections—andhasthe merit of beingvery simple
to graspandmaybeto serveasan introductionto the ideasof ref. [2] summa-
rized here.Our approachcan be shown to be essentiallyequivalentto the last
constructionpresentedin ref. [2] (it is not fully equivalentto the onepresented
in ref. [1] or ref. [4], becauseof the different choicethat wasmadefor the dif-
ferentialalgebra,namelyQA in ref. [1] (or [4]) andQDA in ref. [2]). Another
paper [1 8], which is more “phenomenological”,relatestheseideaswith older
approachesdealingwith the appearanceof Lie super-algebrasin the Standard
Model (seealso ref. [19]).

The final outcomeof ref. [2j (or [18]) is the classicalLagrangianthatevery-

body usesin particle physics.There is an argumentaboutwhetheror not this
kind of approachdecreasesthe numberof arbitrary constantsin the Standard
Model. At the classicallevel, this seemsto be the case (or at least thereare
“canonical” choicesleadingto such a decrease).But in any case,gettinga clas-
sical Lagrangianshouldnot be consideredas the endof a story but only as its
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beginning!Onehasindeedto considerthefully interactingquantumfield theory,
which, unfortunately,existsonly in a formal seriessense:the principle of gauge
invariancealone—theonly principle on which renormalizationof perturbative

gaugetheoryrelies—allowsfor anumberof arbitraryconstantsthat is fixedin the
StandardModel. Decreasingthis number,i.e. imposing,to all ordersof quantum
field theory, constraintsunrelatedwith gaugeprinciples, looks ratherartificial

andwould bejustified if we hada geometrical—oralgebraical—understanding
of whatthe fully interactive (non-perturbative)quantumfield theory is. This is
unfortunatelynot yet the caseandneedsan infinite dimensionaljump! It may
bethat suchan understandingis nottoo far aheadandwill requirepart (if not

all) of the mathematicalconceptsreviewedin thesenotes.
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