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Introduction

The following set of lectures is a introduction to the field of non-commutative
geometry. It is supposed to be elementary, in the sense that the lectures should
be easy to read, but it should lead us nevertheless to some advanced topics. This
implies that we shall have to skip many important details in order to proceed.
It also means that it is not possible to put everything in such a small volume.
The organizers of this School hoped that a lecturer could try to make a paeda-
gogical overview of the field, and could, at the same time, try to present some
of the recent ideas of A. Connes. This is not an easy task and may be doomed
to failure, but it is nevertheless the purpose of this short set of notes. There-
fore 1 apologize for not being able to discuss here all of the many interesting
topics belonging to the realm of non-commutative geometry (for instance quan-
tum groups), first by lack of space and also because other lecturers will do it.
Notice that an introductory book to non-commutative geometry already exists
[1]. This book is available in French but an English version of it should ap-
pear soon [2]. The following is by no means a “summary” of this book, but
a set of some—hopefully—paedagogical digressions about selected ideas to be

1 On leave of absence from: Centre de Physique Théorique, CNRS Luminy, Case 907, F 13288-
Marseille Cedex 9, France.
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found there. Besides, there are also a few topics not discussed in ref. [1] but in
earlier papers such as ref. [3], topics that will also be discussed briefly. It was
recently observed that non-commutative geometry offers a very nice conceptual
framework for the mathematical implementation of what is usually known as
the “Standard Model” of particle physics. Obtaining the classical Lagrangian
of electroweak interactions from a very general mathematical construction is
certainly very nice, since it gives us a new way of thinking about space and
matter; but it is not clear that this is going to be the most important contri-
bution of non-commutative geometry to physics. In any case, a very detailed
account of the construction introduced in refs. [4,2,3] is already available [5].
For these reasons one should not expect to find a detailed discussion of these
topics here, and only a single section—the last—will be devoted to them. The
following is therefore only what the title suggests, namely a brief—and partial—
introductory survey of non-commutative geometry, which is doomed to become
obsolete soon. It should be perceived as an invitation to further reading and
study. Several theoretical physicists and mathematicians share the belief that
non-commutative geometry is going to change our philosophical point of view
on quantum physics, and physics in general, and that it should also provide
the mathematical framework in which long-standing problems such as the con-
struction of four-dimensional non-perturbative quantum field theories or even
quantization of gravity, should take place. This certainly justifies the interest of
physicists in learning the present subject, but this is only a hope at the moment.

WHAT IS NON-COMMUTATIVE GEOMETRY?

In order to answer this question, we should first remember the following result
(Gelfand): The definition of a given topological space X (a set of “points” x)
1s equivalent to the definition of a commutative algebra A. The relation between
these two points of view is the following: A = C (X)) is the algebra of complex
valued functions on X. Conversely, X is the spectrum of the algebra A, 1.e.,
points x can be considered as irreducible representations, thanks to the magic
(and obvious) relation x[f ] = f(x) when f € A. Our classical point of view
on the Universe—even after the Einsteinian revolution—refers to “spaces”, 1.e.
spaces of “physical points” or spaces of “events”. The previous theorem says
that claiming that the Universe is described by a commutative algebra is con-
ceptually the same thing as claiming that the Universe (space or space-time) is
described by a topological space (a set of points). In the case of a space (a set)
X, it is traditional to study, in turn, measure theory, topology, differential geom-
etry, Riemannian geometry and possibly more particular structures like a group
structure or a homogeneous-space structure, etc. Because of the fundamental
duality between X and A = C(X), 1t is clear that everything that can be written
in terms of X can be written in terms of 4. This will be the first task. Then one



R. Coquereaux / Non-commutative geometry: a physicist’s brief survey 309

should express all fundamental mathematical concepts in a way that does not
require commutativity of the algebra .4. When this is possible, we just have to
erase the qualifier “commutative” and promote the corresponding concepts to
the realm of non-commutative algebras. One answer to the question asked previ-
ously is therefore the following: the usual geometry is the study of commutative
algebras and non-commutative geometry is the study of non-commutative alge-
bras. But this answer is not very satisfactory because what is important here is
the intuitive point of view, the fact that usual geometry was taken as a guideline
and that we want to think about the different features of this new mathematics
as those properties of non-commutative algebras that generalize the well-known
properties of usual spaces. Maybe a title such as “non-commutative mathemat-
ics” should be more appropriate, but it would cloud the fact that, in this new
game, we always want to follow usual geometry as a guide.

WHO DOES NON-COMMUTATIVE GEOMETRY?

First, of course, we have the mathematicians themselves. One can distinguish
two main lines of research (this is often done simultaneously). First people
have to develop new tools and concepts. Next, one can apply these new tools to
study examples, for instance “bad” spaces (bad quotients, infinite dimensional
situations) or specific non-commutative algebras.

Then we have the physicists. Historically, non-commutative geometry is not
new since it is as old as quantum mechanics itself! Actually the tools created by
physicists—or at least used for quite a while—have invaded the field of oper-
ator algebras. Let us just mention a few concepts: Pure states and mixtures in
statistical mechanics (states on star algebras), equilibrium states (KMS states,
Tomita-Takesaki theory and von Neumann factors), quantification of classi-
cal systems (deformation theory), renormalization of logarithmically divergent
operators (Dixmier trace ), Higgs mechanism and symmetry breaking (Rieman-
nian geometry of discrete spaces), ... . Nowadays, physicists use the methods
of non-commutative geometry in physical systems (gap labelling [6], quantum
Hall effect [6], quantum field theory [7], etc.).

It should be clear that every physicist working in quantum physics works in
non-commutative geometry (but often like Monsieur Jourdain). Many math-
ematical tools developed (or “mathematical facts” discovered) by theoretical
physicists do exist and wait to be incorporated in a general and appropriate
mathematical framework. Conversely, many tools recently invented by mathe-
maticians wait to be used in quantum physics. It may be sad to remember that,
except in dimension two, the whole apparatus of quantum field theory is most of
the time a formal series construction whose fundamental mathematical signifi-
cance is rather unclear—maybe non-commutative geometry will cast a brilliant
light on this subject. Again, this is hope.
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1. Non-commutative measure and topology

We already mentioned the fundamental Gelfand correspondence between
topological spaces (compact topological spaces) and commutative C* algebras
(C* unital algebras). By removing the word “commutative”, we see that non-
commutative topology is nothing else than the study of non-commutative C*
algebras.

In the classical case, i.e. in the case of “commutative geometry”, and inasmuch
as measure theory is concerned, we are usually happy with Borel measures, i.c.,
rather than developing abstract sigma algebras and their like from scratch one
first defines a topological structure on a space X and takes as measurable sets only
those sets that are obtained from the topology of X. In other words, one considers
the sigma algebra generated by the family of open sets. Then, rather than starting
from the space X, we can start from the algebra of continuous functions (that
encodes the topology) and define (positive) measures as (positive) continuous
linear forms on the commutative algebra C (X) of continuous functions, i.e.
linear functionals u such that 4(ff) > 0Vf € C(X). The correspondence
with the usual definition of measures is obtained via the Riesz theorem, namely
by writing u[ /1 = [, fdu. From C(X), we build the measures x. From a
given u. we can build the Hilbert space H = L’(X,u) of square integrable
functions. From H, one builds the commutative von Neumann algebra 1> (X, u)
of essentially bounded, measurable functions, and this space can be seen as a
subspace of £L(H), the algebra of all bounded operators in H. This is done as
follows: the elements of C (X)) act on ‘H by multiplication, therefore we obtain
a representation 7 in H of this commutative algebra. The algebra L> (X, u)
is defined as the commutant of 7, i.e. as the set {7 € L(/) st Tn(f) =
x(f)YT ,vf € C(X)}. Notice that this algebra is equal to its own commutant
in L(H), so that C(X) c M = £>(X,u). The definition of the measure x is
then extended to £ (X, u). All this is standard measure theory, but the point is
that it is possible—as we saw—to present it in a way that starts from the algebra
and not from the space.

By mimicking the previous construction and removing the qualifier “commu-
tative” we discover “non-commutative measure theory”, which therefore coin-
cides with the study of von Neumann algebras. One sketches this construction
as follows. We first start from a C* algebra A, in general non-commutative—
hence it is not the algebra of complex functions on a topological space!—and
define states on A—the analogue of measures—as normalized positive linear
formson A, i.e., u € A*, u(f*f)>0vf e 4, u(1) = 1. We then construct a
Hilbert space H by first defining a scalar product {f, g) = u(f*g) making 4 a
pre-Hilbert space and calling H the corresponding completed, separated vector
space. This is the so-called GNS (Gelfand—Naimark-Segal) construction. As in
the commutative case, A acts on H by multiplication, which defines a represen-
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tation of A4 in the space £(H) of all bounded operators. One finally builds the
von Neumann algebra M as the bi-commutant of 7(A4). Here it is necessary to
take the bi-commutant because in the non-commutative case, the commutant
and bi-commutant of n(A4) differ. This M is therefore the non-commutative
analogue of £> (X, ). The final step is to extend the definition of u to the
whole of M—of course 4 € M, and remember that, by definition, a von Neu-
mann algebra is a unital subalgebra of £(H ) which is equal to its bi-commutant
and is endowed with a star operation. Remember also that, if 4 is an algebra of
operators, 4, A" and 4" are usually different but A" = A’

One should now discuss many other interesting topics, but we shall only men-
tion a few. For example, the non-commutative analogue of infinite positive mea-
sures is the theory of weights on von Neumann algebras. This theory incorporates
several nice mathematical constructions such as the theory of KMS states, the
theory of Tomita-Takesaki, the classification of factors, etc., and is at the root
of statistical mechanics of infinite dimensional systems. Another example is the
non-commutative analogue of the theory of embeddings, immersions or isotopy
of manifolds: rather than “inserting”™ spaces (or commutative algebras) within
one another, one studies the relative “positions” of several non-commutative
algebras. Here we find therefore notions like entropy, completely positive maps,
subfactors etc. Physics-wise, this kind of topic is very much related to informa-
tion loss when we choose one or other algebra to describe the same “reality”;
therefore it is also related to the correspondence between quantum and classical
description [8]. At the fringe between mathematics and physics, let us mention
also the new developments in knot theory [9], motivated by questions about
relative positions of subfactors.

2. Non-commutative universal differential forms

2.1. FIRST DEFINITION OF £2 4

Given an arbitrary algebra A, one can construct a universal object 24 as
follows. To every element @ € A we associate a new symbol da. As a vector space,
£ A is the linear span of words built out of the symbols ¢ and da. Multiplication
of two such words is done by concatenation and one imposes the usual algebraic
rules of associativity and distributivity over 4. The only non-trivial relation is
the Leibniz rule

o(ab) = d(a) b + a d(b).

Thanks to this rule it is clear that any element can be written as a sum of
monomials of the kind agda,da, ---da, or a;da, - - - da,. For instance,

apd (ay)d (az)as = apd (a;)d (axaz) — apd (a;)azd (a;)
= agd(a,)d(axa3) — apd(ayay)d(asz) + apa;d (a)o(as).
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It is convenient to add a unit 1 to A, even if it already had a unit—which
we call e—and set 1 = 0; then the two kinds of basic “words” defined above
collapse because we can write da;---da, = 1da;d0ax---da,. In the extended
algebra e is no longer a unit but a projector. The symbol J is now defined as an
operator by the rules J (apda, ---da,) = dapda; ---da, and 6 = 0. The 24
is graded, since we can write QA4 = > [ Q27 A, where Q7 is the linear span
of monomials agda, - --da,. It is therefore a graded differential algebra. It is a
universal object in the sense that it factorizes derivations (see, for instance, ref.
[3]). We should mention that there exists a Z,-graded version of 2.4 [10] but
we shall not use it. Let us mention also (we shall use this fact) that in many
interesting cases 2 4 can be represented—in some cases as an algebra, in other
cases as a differential algebra—within the space £ (/1) of bounded operators on
some Hilbert space H.

2.2. CLASSICAL EXAMPLE A = C (X))

In that case, f/ € A is a function of one variable and we may consider ¢ /" as
a function of two variables, setting d f (x,y) = f(y) — f (x). The Leibniz rule
1s satisfied, since

SWMg)-r(x)gx) =) —-f)]1gy) + [(xX)[g(y)—g(x)];

therefore d (fg) = 6 (f)g+ fJ(g).Inthe same way, a monomial like apda;da,
can be interpreted as ag(x) [a; (1) —a,(x)][ay(z) —a>(y)], 1.e. as a function of
X x X x X vanishing on contiguous diagonals. There is a useful map, sometimes
called the “classical map”. It goes from the universal differential algebra 2 A4 to
the usual differential algebra A (X ) of differential forms on X, and is defined
on monomials (for instance of degree two) by Cl(agda;dar) = agda; A das.
Notice that C1(/ (x,v)) = (9f (x,y)/0y* )y dx¥.

2.3. SECOND DEFINITION OF £ 4

The previous example, and in particular the equation Jf (x,v) = f(y) -
f(x), suggests the following alternative construction of £ 4 for an arbitrary
algebra A with unit. Forbe Awesetdb = 19b-b21 € A2 4. Then one
getsadb = axb—ab® 1 € Ker(m) C A& A. Here Ker(m) denotes the kernel
of the multiplication map m(x,y) = xy € A. One then defines 2! = Ker(m).
As an example of multiplication we choose to consider, for instance,

adbdc = (a@b-abz1)(1lgc—cx1)
=abc—aba1%c—azbcgl +abzcal.

One therefore defines 22 = Q' @, Q' @, --- o4 Q1.
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2.4. USEFULNESS OF 2 A4

First we have the universality property—this was already mentioned. But
moreover it is possible to consider multilinear forms on A as linear forms on
Q A, which is often very handy. Indeed, the knowledge of the (n + 1)-plet of
elements {ag,a;,...,a,} of A, where none of the g, is equal to the “extra unit”
1 (remember that we added a unit in section 2.1), is totally equivalent to the
knowledge of the element agda, - - - da, of £ A. Indeed, the symbol da is merely
another copy of the symbol a. However, this is true only before we add the unit
1 since 1 = 0 and, consequently, da may be equal to b without a being equal
to b. Therefore, if ¢ denotes a multi-linear form on 4—where 4 denotes the
algebra of interest before the addition of an extra unit 1—it can be identified
with a linear form also called ¢ on the universal differential algebra through the
relation

¢(ag,ay,...,an) = ¢{agda,---day),

but this form is such that ¢(1da; - --da,) = 0. Therefore many concepts—
in particular cohomological concepts—related to multilinear forms on 4 (an
algebra with or without unit ¢) can be expressed in terms of those linear forms on
£ A (where we have added an extra unit 1) that satisfy the above constraint. Such
linear forms are calied “closed” in ref. [3] but we shall avoid this terminology
because of the too large number of possible (co)-homological concepts related to
the subject. We conclude this subsection by mentioning that (# 4 1 )-linear forms
on A or, equivalently, linear forms on £ 4 that vanish on elements 144, - - - day,
are usually called Hochschild co-chains (more about it later).

2.5. THE CUNTZ AND ZEKRI ALGEBRAS

Although we have no room for discussing these two important constructions
here, we want to remind the reader that, if # is an endomorphism of A4, i.e.,
if u(ab) = u(a)u(b), then writing y = 1 + g defines an operator satisfying
the relation g (ab) = (qa)b + a(gb) + (ga)(gb), which looks like a deformed
differential and can also be written g(ab) = g(a)b + u{a)q(b). This means
that ¢ is a derivation twisted by an endomorphism. One can [11] then construct
an algebra QA out of symbols apg (a;)g(ay) - - g(a,) exactly as we did for 2 A.
There 1s also a Z,-graded version of this construction [12] (the algebra Z A4 ).
Both algebras play a major role in non-commutative geometry.

3. Non-commutative De Rham currents: Hochschild cohomology

We already saw that in the classical case, i.e. 4 = C(X), the algebra Q 4 was
much larger than the algebra A (X) of differential forms. It can be shown that
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Hochschild homology coincides, in this case, with differential forms. However,
because we choose to work with cohomology rather than with homology, we
expect that Hochschild cohomology will coincide with the dual of differential
forms (distributions), i.e. with what is called the complex of De Rham currents.
This is indeed so. The purpose of this section is therefore to sketch a construction
that coincides with the definition of (distributions on) differential forms, but
that can be generalized to the case of a non-commutative algebra 4. In the last
section, we shall also describe another construction, leading directly to a non-
commutative analogue of A4(.X).

3.1. GENERAL CONSTRUCTION

We know that § on £ 4 is almost trivial from the homological point of view
(only “almost” because 61 = 0).

One defines the Hochschild co-boundary operator » as follows. Acting on
dlag,ay,...,ay) it gives

[b¢](a09a1""aan+l) =

n
S =1V ¢lao,....aa)41, .. ang1) + (1) (anira0, ..., an) .
Jj=0

For example,

[bd](ap,a1,az,a3) =
dlag, ay, mas) — ¢lag, ayaz,as) + ¢lapa;, ay,a3) — ¢lasag, ay, az) .

At this point it may be enlightening to compare this expression with the calcula-
tion of agd (a; )d (ay )az done in section 2.1. Indeed, one can see that, provided
we identify multilinear forms on A and linear forms on 2 4 (with the constraint
discussed previously), calculating b¢ amounts, in this example, to calculating
¢ ([agda;day, as]). This can be generalized, but we shall not use this formalism
and refer to ref. [3] or ref. [10].

The next step is to show that b2 = 0, and this is straightforward and cumber-
some ... .

Since we have a cohomological operator, we define, as is usual, the space
of Hochschild cocycles Z” = {¢ € C"/b¢ = 0}, the space of Hochschild
coboundaries B" = {¢ € C"/¢ = by for y € C"'} and the cohomology
group H" = Z"/B". In the above, C" denotes the space of (n + 1)-multilinear
forms on A; notice the shift by one unit.

Terminological remark: the curious reader looking for a definition of Hoch-
schild cohomology in a book of homological algebra could be puzzled because
this cohomology is usually defined as a cohomology with value with a bi-module.
Here the bi-module is the dual of A itself, and we did not mention this before
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because it was not necessary. This choice, along with the fact that we have
an obvious pairing between 4* and A is, however, at the origin of the above
construction.

3.2. THE CLASSICAL CASE

We know that De Rham currents are distributional forms, i.e., if C is a p-
current and w is p-form, then (C, ) is a number. We shall indicate the corre-
spondence between (arbitrary) currents and Hochschild cocycles in the partic-
ular case of two-forms, leaving to the reader the task of generalizing it (see ref.
(3.

From currents to Hochschild cocycles: C being given, we construct ¢{(f, g, %)
= (C, f dg A dh). One can then check that b¢ = 0.

From Hochschild cocycles to currents: ¢ being given, we construct {C, / dg A
dh) = ¢(f.g,h) —¢(f.h,8).

The above two formulae are different because there is no reason for ¢ to be
antisymmetric.

It remains to be seen, ¢ being a Hochschild coboundary, if the corresponding
current just vanishes, which is an easy consequence of the definition of b and of
anti-commutativity of the wedge product.

The conclusion is that the Hochschild cohomology group of degree p coincides
with the space of De Rham currents of degree p. In particular, one can check
that the space H? is trivial as soon as p is larger than dim (.X).

In section 10 we shall see a new construction, which, when applied to 4 =
C (X)), gives directly the algebra 4(X) of differential forms.

4. Non-commutative De Rham cohomelogy: cyclic cohomology

One motivation for looking for a more refined cohomology in the non-com-
mutative case is the following: We know, thanks to the previous construction,
how to define a non-commutative analogue of differential forms, but we have
no candidate—yet—for an analogue of the De Rham cohomology—i.e. Betti
numbers etc. Since we are working at the dual level, we are looking for a non-
commutative analogue of the operator & that acts usually on currents as follows:
(0C, ) = (C,dw), where w € A(X).

The easiest definition (this is obviously a matter of taste) is the following. We
start from the following notion:

¢ is cyclic & ¢(ag, ay,....an) = (=1)'Pp(a,, ap,a,...,an_1).

We then make the following fundamental remark [3]: If ¢ is cyclic, then b¢ is
also cyclic.
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It is then natural to consider the cyclic subcomplex of the Hochschild com-
plex, 1.e., to consider only cyclic Hochschild co-chains along with the same b
operator as before. One then defines the spaces Z/', B} of cyclic cocycles, cyclic
coboundaries and their quotients, the cyclic cohomology groups H'.

In the “classical case™, i.e. with 4 = C> (X)), one [3] proves

Hf =Kerd ® Hy 2® Hy_q--+,

where Ker d is the kernel of the @ operator in the space of k-dimensional currents
and where H, denotes the iomology group of degree p for currents. This means
that we do not get a term-by-term equality between the cyclic cohomology groups
and the De Rham homology groups for currents, but that, nevertheless, the
information content is the same, since, provided we choose k big enough, the
even or odd cyclic cohomology groups are equal to the direct sum of all the (even
or odd) De Rham homology groups.

This result suggests, at least in the case of C (XX'), that there should be a canon-
ical way of sending H” in H/**. This is indeed true. Actually, a much stronger
property holds: for any algebra one can define an operator S, often called the
Connes periodicity operator, that maps C? to Cf*z—with Cr referring to cyclic
cochains. It is therefore natural to define, in general, the so-called “even and odd
periodic cyclic cohomology groups” as the inductive limit of Hf" and Hf” +

5. A bestiary of other nice concepts

We have not enough time here to present all the inter-relations between the
above constructions and to mention the many other nice concepts and operators
introduced in ref. [3]. We shall only give the definition of those operators that
play (or are bound to play) an important role in non-commutative geometry.
Besides the periodicity operator S : C7 — CP*+2 that was already mentioned, we
may consider the following operators: the cyclic antisymmetrization operator

[A¢] (a0, ay, ... ,an)
= ¢(ag,ar,...,an) + (=1)"¢(an, ao,....an 1)
+ ¢lay,_1,an, ag,...) + (=)"¢(ay_2,a,_1,an,ag,ay,...) + -,
and the non-antisymmetrized boundary operator B, defined as
[Bogl(ag,ai,....,an) = ¢(e,ap,...,ay) —¢lao,...,an€),

where ¢ is the unit of the algebra, which in this case is required to be unital.
The cyclic boundary operator is, by definition, B = ABy. Then B maps C” to
C"! and one can show that B? = 0 and that bB + Bb = 0. Using the last two
properties along with b2 = 0 one can also define a bi-complex (notice that b and
B act in opposite directions—from p to p + 1 or the converse—so that bB + Bb
sends p chains to p chains). From this bi-complex one can define “entire cyclic
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cohomology” [13] as follows. Entire cocycles are sequences (¢s,) or (¢an41)
made of even or odd functionals ¢ and satisfying the following constraint (we
write 1t below for the odd case):

b1+ Bdopyr = 0.

Using such a cocycle, also assumed to obey some kind of growth conditions, one
can define an entire function on the algebra 4 ,

Fy(x) =) (‘nl!) Ban (X, X, ..., x).

n=0

There are explicit formulae for such cocycles, cf. refs. [7,13]. Notice that such
an F, can be thought of as a kind of “effective action”. Entire cyclic cohomology
seems to provide the appropriate formalism needed to handle infinite dimen-
sional cases in “commutative geometry”.

6. Non-commutative vector bundles and connections

Again we use classical geometry as a guide. A principal bundle is nothing else
than a “machine” helping us to construct associated—in particular vectorial—
bundles. These vector bundles, in turn, are used to construct sections of vector
bundles—i.e. physical matter fields. The important algebraic remark is then the
following : The space £ of sections of a vector bundle E above a manifold X is
a module over the algebra 4 = C°(.X). Finally we know that anything that is
twisted can be untwisted by putting it into a space of higher dimension. In bundle
language, this means that any vector bundle—trivial or not——can be trivialized
by increasing its dimension (adding copies of C").

In non-commutative geometry, a “vector bundle” will be replaced by a left or
right module over a not necessarily commutative algebra 4. The “left” or “right”
adjective comes from the fact that, in a general situation, a module over 4 will be
left or right but not necessarily a bi-module. In other words, if v € £ and f € A,
f-vandwv-f will not both make sense as elements of £. Actually, and because of
our western habits of writing from left to right, it turns out that it is usually much
more convenient to consider right modules than left modules. A trivial bundle
will now be a free module, i.e. a module isomorphic with 4" for some #. A non-
trivial “non-commutative vector bundle” will be characterized by the fact that it
is a quotient of a free module, i.e., £ is isomorphic with p A" for some projector
p, p* = p. This is the non-commutative analogue of the “untwisting property”
that was recalled above. To summarize: Non-commutative vector bundles are
(right) finite projective modules over an algebra 4. The classification of vector
bundles above a space X leading to the so-called K-theory of X is now replaced by
a classification of projectors (modulo appropriate equivalence) and this defines
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the K-theory of the algebra 4. This is less elementary stuff and we stop the
discussion here.

To define connections and covariant exterior derivatives, we choose again
the classical situation as a guide. The covariant exterior differential ¥ is a map
£ — £ @4 A" sending vector fields (or tensor fields) to one-form-valued vector
(tensor) fields. It satisfies

VX)) = (VX)f +Xadf, Xcé& fecdd
One then extends this definition to £ = £ &4 AP as follows:
V&P —ertt
VX 2d) = (VXA + (-1)PXsdi, Xeé&fied
One then checks that the curvature V2 is a linear object:
V(X)) = (VIX)A, Aic A

In non-commutative geometry, we do therefore exactly the same! The only
points to which one should pay attention are the following. First we use right
multiplication by functions (as in the above formulae) since £ is only a right
A-module. Next, one has to choose a graded differential algebra A that should
be a A-bimodule. In the classical case, A is the algebra of differential forms
ACX). with 4 = C*(X) = A°(X). In the non-commutative case, there are
many possibilities and each one defines a differential calculus. The most obvious
choice is to choose 4 = A, as defined in section 2 (notice that even in the
classical case, this possibility leads to a generalization of the usual differential
calculus, since the algebra of differential forms is only a quotient of the universal
algebra 2 .4). When the algebra 4 has enough derivations, it may be useful to
build a differential calculus relying on the choice 4 = C(Der 4, 1) of .4-valued
multilinear forms on the space of derivations, or even on the choice of £py 4.
its smallest graded differential subalgebra containing 4. This possibility was
investigated in refs. [14.15]. Still another choice will be briefly described in
the last section. Notice, finally, that in the case where A is equipped with an
extra structure—for example, if .4 is a Hopf algebra—therc may be particular
differential calculi enjoying particularly nice properties [16].

As a basic example we may take £ = A itselfand 4 = (2.1.J). We suppose
that 4 is unital (maybe after adding a unit). Let 1 € 4 and call v = V1 € Q.
Let f € A;thenV/ = V(1 f) = (V1) f +126f = 6/ +w/f. The curvature is
f = Vw = V21, and therefore = V(lw) = (Vw4 (—1)°1dw = dw+ v’

Notice that even in the “classical case”™ 4 = C(X), we may consider con-
nections suchas w = fdf — %6(f2), which are non-zero in Q' and therefore
are connections in the previous sense, but have no classical counterpart since
Cl(w) € A" is obtained by Cl(w) = fdf — %df2 = 0. Remember that an
arbitrary element of ! can be defined as a function of two variables vanishing
on the diagonal, hence it is a bi-local quantity.
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7. Non-commutative elliptic operators

Motivations. People want to be able to “compute” cyclic cocycles and also to
be able to consider “abstract” elliptic operators, generalize index theory to the
non-commutative case, etc.

Almost trivial remarks. Consider a Z,-graded Hilbert space H = H, ® H_ —
think for instance of the left and right spinor fields on a 2n-dimensional spin
manifold—with grading I equal to ( (') f’l )—think of the chirality operator ys—
with an algebra A acting on H—think of the multiplication of spinor fields by
scalar functions defined on the manifold. Then, every operator B in ‘H can be
decomposed into an even and odd part, B = B, + B_ with By = J(B+ B"),
B! = I'BTI. Let us now consider an operator F : H — H which obeys the
properties F? = 1 and FI" = —I'F. Then, let us define

dB =i[F,B], with[F,Bl, =FB-B'F.

It is easy to check that the d operator, defined thanks to this graded commutator,
is a derivation and satisfies the property d> = 0 (coming from F2 = 1). As
a classical example, we may choose the Dirac operator D on a Riemannian
manifold, write a polar decomposition D = |D|F where |D| is positive and
F?=1.

Non-commutative generalization. The only thing to be done in order to go to
the non-commutative framework 1s to forget about commutativity, spinor fields,
chirality and A = C(X) but to promote the previous properties to the status
of a definition—technically, one has also to assume that [F,a] is a compact
operator for any g in 4. Such a triple (H, I, 4) then defines what is called an
“even Fredholm module” [3]. There is an analogous theory for the odd case
which, in the classical case, corresponds to the choice of a manifold with odd
dimension—when there is no chirality operator and there are no half-spinors.
Let us proceed with the study of the even case. The interest of this construction
is the following. One can prove [3] that

t(ag,ay,....an) = Str(ag[F,ai][F.ax] -+ [F,an]),

where
Str(B) = 3t (I'F[F,B])

is a cyclic cocycle on A. This makes sense provided the trace exists, which implies
that »n should be large enough, say # > p — 1. In that case, the even Fredholm
module is called “p-summable”. The previous construction therefore yields cyclic
cocycles, i.e., what we may call topological invariants of the algebra 4. From that
point one can develop a non-commutative analogue of index theory, of the K-
theory and of its dual, called K-homology. Going into these matters would drive
us too far, but just note that, exactly as in the classical case where one gets
“topological numbers” from the pairing between vector bundles and operators,
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one gets also topological numbers in the non-commutative case, like for instance
7(e,...,e), from the pairing between an abstract operator F, used to define
7, and a “non-commutative vector bundle” characterized by the choice of a
projector ¢ in A or in M, (C) & A.

8. Non-commutative Riemannian geometry: K-cycles

The classical path. The usual approach in textbooks of differential geometry is
to follow the path: topological space, smooth manifold, metric (and distance),
Dirac operator, spinor fields. Not surprisingly, if we try to express everything
by using functions on the manifold X—which we shall assume compact here—
rather than in terms of points, we may follow exactly the same steps but in
the reverse order. More precisely, the claim [2] is that we can recover every-
thing from the data (4, H, D), where 4 1s an Abelian von Neumann algebra of
multiplication by measurable bounded functions on X, where H is the Hilbert
space of L? spinors and where D is the Dirac operator. How can we proceed
(without knowing X, of course!)? First we call L the subset of .4 contain-
ing all /' € A such that the commutator [D, /] is bounded. It can be shown
that such functions f are almost everywhere equal to a Lipschitz function—i.e..
f(x)—f0) <cd(x,y),vx, v € X. This remark can be used to define the
distance itself as

d(x,y) = Sup{|/(x)— f(»)

Notice that a supremum over a space of functions replaces the usual infimum
over a space of points. The final step is to recover the C* algebra .4 of continuous
functions on X as the norm closure of L in 4. Now we have A4 and can therefore
reconstruct the space X itself as was recalled in the first section.

In the non-commutative case. the whole construction goes through, just by
removing the adjective “commutative”. More precisely, one starts from the
same data (A, H,D), where the von Neumann algebra A is not supposed to
be Abelian—these data are called a “K-cycle” in ref. [2]. Then L and the—
non-commutative—C* algebra A are constructed as above. The distance 4 is
also obtained from the same formula, but now the “points” x and y are states
on the algebra. We have therefore the non-commutative analogue of a Rieman-
nian structure (and we write x [ /] rather than / (x) since we have states, i.c.
generalized “points™).

The last missing concept is the non-commutative analogue of the volume form
associated with a Riemannian metric. The crucial remark—valid in the classical
case—is that we may write

S EeAIND SN < 1}

/fd'“ = TrDixmier(fD_n),
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where f € 4, n = dim(X ) and where the Dixmier trace is defined—formally—
as a limit of the sequence (Log N)~! Zév Zj, A; running over the eigenvalues of
the operator £ D~9. The whole point is that this “trace”, which is a trace but gives
zero on any operator of trace class, is a concept that also makes perfect sense
when f belongs to a non-commutative algebra 4. In physicists’ language, this
“Dixmier trace” picks up the pole part of a logarithmically divergent operator.
Notice that n does not need to be an integer. The above formula is then used to
define the left-hand side, 1.e. the non-commutative analogue of the volume form.
Notice that this formula is rather intuitive—at least in a very formal sense—for
instance by writing dv = d*x and D = y*# 9/9x*! To conclude we notice that
the whole geometry—including the volume form-—has been recovered from the
single piece of data called a “K-cycle”.

9. The non-commutative Yang-Mills action

Let D be a Dirac operator—in the previous sense—and write D = |D|F with
F? = 1. From a formal expression apda,;da; - - - day,, i.e. an element of 24, we
already know that we can build Str(ag[F,a;]--- [F,a,]), which is a topologi-
cal invariant. With the previous formalism at our disposal, it is rather natural
to consider also a quantity such as Trpjymier(ag[D,a;1[D,az]--- [D,a,]D™").
Indeed, in a classical and “flat” case, the operator [D, f ], with f € C>*(X),
is nothing else than a multiplication by y#9,f , where y# are Dirac (Clifford)
generators and # = dim (.X'). Choosing £ as A itself and the differential algebra
Q A4, we see that 0, the curvature of the connection, is an element of 22, and
62 is an element of 24, therefore a sum of elements of the kind ayda; - - - day.
One can now represent 4 and £2 4 as operators in ‘H, thanks to the replacement
da — [F,a] or da — [D,a]. Notice that only the first one leads to represen-
tation of 24 as a differential algebra since D? # 1. In any case, one expects
the first kind of expression—using F and Str—to lead to a topological invariant
like 9,,,,9’“’ and the second kind—using D and the Dixmier trace—to lead to the
action functional 6,,6#". This is indeed so.

In general, one has to couple the connection V to the Dirac operator D, i.e.
to consider the analogue of y#(9, — w, — 4,), w, being the spin connection.
We also need a spinor scalar product to be able to write the fermionic action,
i.e., we need the analogue of the Dirac “bar” operator. The method consists in
choosing a Hermitian (and finite projective) module £ over A4, along with a
connection V as a map from £ to £ ® 2'. This connection has to be compatible
with the Hermitian structure, in the sense that d ({(¢, ¢)) = (v, Vo) + (Vy, §)—
in physics, we prefer to write (w, ¢) = W¢. One then defines Dy as a map from
€ ®4 H to itself such that Dy (v @ w) = v ® Dy + (Vv )w, where Vv, in this
last expression, has to be understood as the linear operator in H representing
the element Vv of £ @ Q1.
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10. Symmetry breaking and Higgs mechanism in non-commutative geometry

Using non-commutative geometry to recover the usual pure Yang-Mills the-
ory is certainly satisfactory but does not bring much from the conceptual point
of view. The situation is different in the case of symmetry breaking (Yang—Mills
fields coupled to Higgs fields). The mere replacement of the “classical™ algebra
A = C(X) bythealgebra A = C(X)® C(X) in the previous construction, i.e.
the replacement of the space X by a “pair” of such spaces, leads directly to a
Yang-Mills action, incorporating not only the usual pure Yang-Mills term but
also a kinetic term for Higgs fields and a self-coupling via a quartic potential
exhibiting symmetry breaking. This was shown in ref. [4]. The definition of
the generalized Yang~Mills action was given in the last section. The calculation,
using the above algebra A, the module £ = A itself, and the differential alge-
bra £ A, is straightforward. Formally, the obtained expression is a Lagrangian
density describing the interaction between a gauge field and a Higgs scalar field,
along with a self-coupling of this scalar field via a symmetry-breaking potential
of fourth degree. Conceptually, non-commutative geometry unifies the concepts
of Yang~-Mills fields and Higgs fields in a generalized connection. In the same
way, the “non-commutative” Dirac operator incorporates the usual Dirac oper-
ator (describing the coupling of spinors to the metric and to the connection),
but also the Yukawa operator (describing the coupling of spinors to Higgs fields
and in particular the mass matrix itself). In this sense, the masses and coupling
of elementary fermions are encoded in the Riemannian structure of the algebra
describing what we call space-time.

Recovering the Standard Model of electroweak interactions in this framework
amounts, in particular, to selecting the “right” algebra 4. The result of the pre-
vious calculation suggests that we have to take a direct sum of two algebras
A = A, ® Ay, in order to get Higgs fields. When A4, and A4, are commutative,
ie., A; = C(X;) and 4, = C(X,), the connection w, considered as an element
of 2!, is a function of two variables and can be decomposed in three pieces:
w(x1,11), w(x2, 1), w(xy,y,) with x(,v; € A, and x;,y, € A,. The first two
pieces, in the limit where (y; — x;) goes to zero, become usual connection one-
forms. The last cannot be made infinitesimal and becomes the Higgs field (a
scalar). Intuitively, one can think of X; and X, as “parallel universes” where
left—or right—movers live, or as the two sides of a piece of paper separated by
a (here constant) distance 1/u, the Higgs mass.

Physically, we have to identify the algebras 4; and A,. Rather than choosing
a non-trivial projective module over the algebra A, it is computationally simpler
to choose a bigger 4 but take the module as A itself. This is what is proposed in
the last version [2] with the choice 4 = (H & C) @ C(X) where H and C are
the fields of quaternions and complex numbers. Emergence of the gauge group
SU(2) x U(1) is then very natural. The above algebra 4 describes a “space”
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that i1s almost classical, in the sense that it is the product of a usual manifold
times a discrete space (notice that the space of complex functions on the set with
two elements is simply C & C). The geometry of the first is specified by a usual
Dirac operator, the geometry of the second is specified by the Yukawa operator
of physicists and encodes in particular the mass matrix (which has no particular
reason to be diagonal). Incorporation of quarks and colour degrees of freedom is
also described in ref. [2], which means that the classical Lagrangian describing
the usual standard model of particle physics is recovered as a particular case of
a very general mathematical construction which, by far, encompasses the usual
classical setting of gauge theories, using principal and vector bundles. Let us
notice an important technical detail: in ref. [2], the differential algebra used to
develop a differential calculus—as described above—and in particular to recover
the Standard Model of electroweak interactions, is not the differential algebra
Q A, but a differential algebra QpA4 defined as the quotient of the first by a
differential ideal, namely by J = Jy + dJy, where J; = Ker(x) and n 1s the
map from QA4 to L{H ), sending apda; - --da, to ap[D,a,]--- [D, a,]. Actually,
2pA 1s a fundamental object since, in the classical case, it can be shown to
be isomorphic with the algebra of differential forms themselves—here one gets
directly the forms and not the De Rham currents, unlike in section 3. This slight
modification of the construction presented in ref. [4] has several advantages,
the main one being getting rid of spurious (unwanted) terms that appeared in
the calculation of the Higgs potential.

Inspired by ref. [4], another non-commutative construction of the Lagrangian
of the Standard Model was proposed in ref. [17]. This construction uses rather
simple mathematical tools and is not supposed to be a multi-purpose machine,
able to handle any kind of algebraic situation. It was, however, devised to re-
cover the Standard Model from non-commutative geometry—in particular from
the notion of generalized connections—and has the merit of being very simple
to grasp and maybe to serve as an introduction to the ideas of ref. [2] summa-
rized here. Our approach can be shown to be essentially equivalent to the last
construction presented in ref. [2] (it is not fully equivalent to the one presented
in ref. [1] or ref. [4], because of the different choice that was made for the dif-
ferential algebra, namely QA4 inref. [1] (or [4]) and Qp A4 inref. [2]). Another
paper [18], which is more “phenomenological”, relates these ideas with older
approaches dealing with the appearance of Lie super-algebras in the Standard
Model (see also ref. [19]).

The final outcome of ref. [2] (or [18]) is the classical Lagrangian that every-
body uses in particle physics. There is an argument about whether or not this
kind of approach decreases the number of arbitrary constants in the Standard
Model. At the classical level, this seems to be the case (or at least there are
“canonical” choices leading to such a decrease). But in any case, getting a clas-
sical Lagrangian should not be considered as the end of a story but only as its
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beginning! One has indeed to consider the fully interacting quantum field theory,
which, unfortunately, exists only in a formal series sense: the principle of gauge
invariance alone—the only principle on which renormalization of perturbative
gauge theory relies—allows for a number of arbitrary constants that is fixed in the
Standard Model. Decreasing this number, i.e. imposing, to all orders of quantum
field theory, constraints unrelated with gauge principles, looks rather artificial
and would be justified if we had a geometrical—or algebraical—understanding
of what the fully interactive (non-perturbative) quantum field theory is. This is
unfortunately not yet the case and needs an infinite dimensional jump! It may
be that such an understanding is not too far ahead and will require part (if not
all) of the mathematical concepts reviewed in these notes.
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